skip to main content

DGCR8 acts as a novel adaptor for the exosome complex to degrade double-stranded structured RNAs

Identifiers: SRA: SRP064143
BioProject: PRJNA296819
GEO: GSE73376
Study Type: 
Transcriptome Analysis
Abstract: The Microprocessor complex (DGCR8/Drosha) is required for microRNA (miRNA) biogenesis but also binds and regulates the stability of several types of cellular RNAs. Of particular interest, DGCR8 controls the stability of mature small nucleolar RNA (snoRNA) transcripts independently of Drosha, suggesting the existence of alternative DGCR8 complex/es with other nucleases to process a variety of cellular RNAs. Here, we found that DGCR8 co-purifies with subunits of the nuclear exosome, preferentially associating with its hRRP6-containing nucleolar form. Importantly, we demonstrate that DGCR8 is essential for the recruitment of the exosome to snoRNAs and to human telomerase RNA. In addition, we show that the DGCR8/exosome complex controls the stability of the human telomerase RNA component (hTR/TERC). Altogether, these data suggests that DGCR8 acts as a novel adaptor to recruit the exosome complex to structured RNAs and induce their degradation. Overall design: [i] Examination of the RNA binding profile of hRRP6 (also known as EXOSC10) via iCLIP. [ii] HeLa cells were transiently depleted of hRRP6 or DGCR8 using siRNAs. For a control an non-targetting (siNon) siRNA was used. Three biological replicates of each samples were sent for RNA sequencing.
Center Project: GSE73376
External Link: /pubmed:26687677

Related SRA data

Experiments:
11 ( 11 samples )
Runs:
47 (204.9Gbp; 105.1Gb)